Metamath Proof Explorer


Theorem rankbnd2

Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankbnd2 B On x A rank x B rank A suc B

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 rankuni rank A = rank A
3 1 rankuni2 rank A = x A rank x
4 2 3 eqtr3i rank A = x A rank x
5 4 sseq1i rank A B x A rank x B
6 iunss x A rank x B x A rank x B
7 5 6 bitr2i x A rank x B rank A B
8 rankon rank A On
9 8 onssi rank A On
10 eloni B On Ord B
11 ordunisssuc rank A On Ord B rank A B rank A suc B
12 9 10 11 sylancr B On rank A B rank A suc B
13 7 12 syl5bb B On x A rank x B rank A suc B