Metamath Proof Explorer


Theorem rankc1

Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankc1 x A rank x rank A rank A = rank A

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 1 rankuniss rank A rank A
3 2 biantru rank A rank A rank A rank A rank A rank A
4 iunss x A suc rank x rank A x A suc rank x rank A
5 1 rankval4 rank A = x A suc rank x
6 5 sseq1i rank A rank A x A suc rank x rank A
7 rankon rank x On
8 rankon rank A On
9 7 8 onsucssi rank x rank A suc rank x rank A
10 9 ralbii x A rank x rank A x A suc rank x rank A
11 4 6 10 3bitr4ri x A rank x rank A rank A rank A
12 eqss rank A = rank A rank A rank A rank A rank A
13 3 11 12 3bitr4i x A rank x rank A rank A = rank A