Metamath Proof Explorer


Theorem rankc2

Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankc2 x A rank x = rank A rank A = suc rank A

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 pwuni A 𝒫 A
3 1 uniex A V
4 3 pwex 𝒫 A V
5 4 rankss A 𝒫 A rank A rank 𝒫 A
6 2 5 ax-mp rank A rank 𝒫 A
7 3 rankpw rank 𝒫 A = suc rank A
8 6 7 sseqtri rank A suc rank A
9 8 a1i x A rank x = rank A rank A suc rank A
10 1 rankel x A rank x rank A
11 eleq1 rank x = rank A rank x rank A rank A rank A
12 10 11 syl5ibcom x A rank x = rank A rank A rank A
13 12 rexlimiv x A rank x = rank A rank A rank A
14 rankon rank A On
15 rankon rank A On
16 14 15 onsucssi rank A rank A suc rank A rank A
17 13 16 sylib x A rank x = rank A suc rank A rank A
18 9 17 eqssd x A rank x = rank A rank A = suc rank A