Metamath Proof Explorer


Theorem rankdmr1

Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankdmr1 rank A dom R1

Proof

Step Hyp Ref Expression
1 rankidb A R1 On A R1 suc rank A
2 elfvdm A R1 suc rank A suc rank A dom R1
3 1 2 syl A R1 On suc rank A dom R1
4 r1funlim Fun R1 Lim dom R1
5 4 simpri Lim dom R1
6 limsuc Lim dom R1 rank A dom R1 suc rank A dom R1
7 5 6 ax-mp rank A dom R1 suc rank A dom R1
8 3 7 sylibr A R1 On rank A dom R1
9 rankvaln ¬ A R1 On rank A =
10 limomss Lim dom R1 ω dom R1
11 5 10 ax-mp ω dom R1
12 peano1 ω
13 11 12 sselii dom R1
14 9 13 eqeltrdi ¬ A R1 On rank A dom R1
15 8 14 pm2.61i rank A dom R1