Metamath Proof Explorer


Theorem rankelb

Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankelb B R1 On A B rank A rank B

Proof

Step Hyp Ref Expression
1 r1elssi B R1 On B R1 On
2 1 sseld B R1 On A B A R1 On
3 rankidn A R1 On ¬ A R1 rank A
4 2 3 syl6 B R1 On A B ¬ A R1 rank A
5 4 imp B R1 On A B ¬ A R1 rank A
6 rankon rank B On
7 rankon rank A On
8 ontri1 rank B On rank A On rank B rank A ¬ rank A rank B
9 6 7 8 mp2an rank B rank A ¬ rank A rank B
10 rankdmr1 rank B dom R1
11 rankdmr1 rank A dom R1
12 r1ord3g rank B dom R1 rank A dom R1 rank B rank A R1 rank B R1 rank A
13 10 11 12 mp2an rank B rank A R1 rank B R1 rank A
14 r1rankidb B R1 On B R1 rank B
15 14 sselda B R1 On A B A R1 rank B
16 ssel R1 rank B R1 rank A A R1 rank B A R1 rank A
17 13 15 16 syl2imc B R1 On A B rank B rank A A R1 rank A
18 9 17 syl5bir B R1 On A B ¬ rank A rank B A R1 rank A
19 5 18 mt3d B R1 On A B rank A rank B
20 19 ex B R1 On A B rank A rank B