Metamath Proof Explorer


Theorem rankelop

Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypotheses rankelun.1 A V
rankelun.2 B V
rankelun.3 C V
rankelun.4 D V
Assertion rankelop rank A rank C rank B rank D rank A B rank C D

Proof

Step Hyp Ref Expression
1 rankelun.1 A V
2 rankelun.2 B V
3 rankelun.3 C V
4 rankelun.4 D V
5 1 2 3 4 rankelpr rank A rank C rank B rank D rank A B rank C D
6 rankon rank C D On
7 6 onordi Ord rank C D
8 ordsucelsuc Ord rank C D rank A B rank C D suc rank A B suc rank C D
9 7 8 ax-mp rank A B rank C D suc rank A B suc rank C D
10 5 9 sylib rank A rank C rank B rank D suc rank A B suc rank C D
11 1 2 rankop rank A B = suc suc rank A rank B
12 1 2 rankpr rank A B = suc rank A rank B
13 suceq rank A B = suc rank A rank B suc rank A B = suc suc rank A rank B
14 12 13 ax-mp suc rank A B = suc suc rank A rank B
15 11 14 eqtr4i rank A B = suc rank A B
16 3 4 rankop rank C D = suc suc rank C rank D
17 3 4 rankpr rank C D = suc rank C rank D
18 suceq rank C D = suc rank C rank D suc rank C D = suc suc rank C rank D
19 17 18 ax-mp suc rank C D = suc suc rank C rank D
20 16 19 eqtr4i rank C D = suc rank C D
21 10 15 20 3eltr4g rank A rank C rank B rank D rank A B rank C D