Metamath Proof Explorer


Theorem rankelpr

Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses rankelun.1 A V
rankelun.2 B V
rankelun.3 C V
rankelun.4 D V
Assertion rankelpr rank A rank C rank B rank D rank A B rank C D

Proof

Step Hyp Ref Expression
1 rankelun.1 A V
2 rankelun.2 B V
3 rankelun.3 C V
4 rankelun.4 D V
5 1 2 3 4 rankelun rank A rank C rank B rank D rank A B rank C D
6 1 2 rankun rank A B = rank A rank B
7 3 4 rankun rank C D = rank C rank D
8 5 6 7 3eltr3g rank A rank C rank B rank D rank A rank B rank C rank D
9 rankon rank C On
10 rankon rank D On
11 9 10 onun2i rank C rank D On
12 11 onordi Ord rank C rank D
13 ordsucelsuc Ord rank C rank D rank A rank B rank C rank D suc rank A rank B suc rank C rank D
14 12 13 ax-mp rank A rank B rank C rank D suc rank A rank B suc rank C rank D
15 8 14 sylib rank A rank C rank B rank D suc rank A rank B suc rank C rank D
16 1 2 rankpr rank A B = suc rank A rank B
17 3 4 rankpr rank C D = suc rank C rank D
18 15 16 17 3eltr4g rank A rank C rank B rank D rank A B rank C D