Metamath Proof Explorer


Theorem rankelun

Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses rankelun.1 A V
rankelun.2 B V
rankelun.3 C V
rankelun.4 D V
Assertion rankelun rank A rank C rank B rank D rank A B rank C D

Proof

Step Hyp Ref Expression
1 rankelun.1 A V
2 rankelun.2 B V
3 rankelun.3 C V
4 rankelun.4 D V
5 rankon rank C On
6 rankon rank D On
7 5 6 onun2i rank C rank D On
8 7 onordi Ord rank C rank D
9 elun1 rank A rank C rank A rank C rank D
10 elun2 rank B rank D rank B rank C rank D
11 ordunel Ord rank C rank D rank A rank C rank D rank B rank C rank D rank A rank B rank C rank D
12 8 9 10 11 mp3an3an rank A rank C rank B rank D rank A rank B rank C rank D
13 1 2 rankun rank A B = rank A rank B
14 3 4 rankun rank C D = rank C rank D
15 12 13 14 3eltr4g rank A rank C rank B rank D rank A B rank C D