Metamath Proof Explorer


Theorem rankfu

Description: An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Hypotheses rankxpl.1 A V
rankxpl.2 B V
Assertion rankfu F : A B rank F suc suc rank A B

Proof

Step Hyp Ref Expression
1 rankxpl.1 A V
2 rankxpl.2 B V
3 fssxp F : A B F A × B
4 1 2 xpex A × B V
5 4 rankss F A × B rank F rank A × B
6 1 2 rankxpu rank A × B suc suc rank A B
7 5 6 sstrdi F A × B rank F suc suc rank A B
8 3 7 syl F : A B rank F suc suc rank A B