Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankfu
Next ⟩
rankmapu
Metamath Proof Explorer
Ascii
Unicode
Theorem
rankfu
Description:
An upper bound on the rank of a function.
(Contributed by
Gérard Lang
, 5-Aug-2018)
Ref
Expression
Hypotheses
rankxpl.1
⊢
A
∈
V
rankxpl.2
⊢
B
∈
V
Assertion
rankfu
⊢
F
:
A
⟶
B
→
rank
⁡
F
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
rankxpl.1
⊢
A
∈
V
2
rankxpl.2
⊢
B
∈
V
3
fssxp
⊢
F
:
A
⟶
B
→
F
⊆
A
×
B
4
1
2
xpex
⊢
A
×
B
∈
V
5
4
rankss
⊢
F
⊆
A
×
B
→
rank
⁡
F
⊆
rank
⁡
A
×
B
6
1
2
rankxpu
⊢
rank
⁡
A
×
B
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B
7
5
6
sstrdi
⊢
F
⊆
A
×
B
→
rank
⁡
F
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B
8
3
7
syl
⊢
F
:
A
⟶
B
→
rank
⁡
F
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B