Metamath Proof Explorer


Theorem rankidb

Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003) (Revised by Mario Carneiro, 22-Mar-2013)

Ref Expression
Assertion rankidb A R1 On A R1 suc rank A

Proof

Step Hyp Ref Expression
1 rankwflemb A R1 On x On A R1 suc x
2 nfcv _ x R1
3 nfrab1 _ x x On | A R1 suc x
4 3 nfint _ x x On | A R1 suc x
5 4 nfsuc _ x suc x On | A R1 suc x
6 2 5 nffv _ x R1 suc x On | A R1 suc x
7 6 nfel2 x A R1 suc x On | A R1 suc x
8 suceq x = x On | A R1 suc x suc x = suc x On | A R1 suc x
9 8 fveq2d x = x On | A R1 suc x R1 suc x = R1 suc x On | A R1 suc x
10 9 eleq2d x = x On | A R1 suc x A R1 suc x A R1 suc x On | A R1 suc x
11 7 10 onminsb x On A R1 suc x A R1 suc x On | A R1 suc x
12 1 11 sylbi A R1 On A R1 suc x On | A R1 suc x
13 rankvalb A R1 On rank A = x On | A R1 suc x
14 suceq rank A = x On | A R1 suc x suc rank A = suc x On | A R1 suc x
15 13 14 syl A R1 On suc rank A = suc x On | A R1 suc x
16 15 fveq2d A R1 On R1 suc rank A = R1 suc x On | A R1 suc x
17 12 16 eleqtrrd A R1 On A R1 suc rank A