Metamath Proof Explorer


Theorem rankidn

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankidn A R1 On ¬ A R1 rank A

Proof

Step Hyp Ref Expression
1 eqid rank A = rank A
2 rankr1c A R1 On rank A = rank A ¬ A R1 rank A A R1 suc rank A
3 1 2 mpbii A R1 On ¬ A R1 rank A A R1 suc rank A
4 3 simpld A R1 On ¬ A R1 rank A