Metamath Proof Explorer


Theorem ranklim

Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006)

Ref Expression
Assertion ranklim Lim B rank A B rank 𝒫 A B

Proof

Step Hyp Ref Expression
1 limsuc Lim B rank A B suc rank A B
2 1 adantl A V Lim B rank A B suc rank A B
3 pweq x = A 𝒫 x = 𝒫 A
4 3 fveq2d x = A rank 𝒫 x = rank 𝒫 A
5 fveq2 x = A rank x = rank A
6 suceq rank x = rank A suc rank x = suc rank A
7 5 6 syl x = A suc rank x = suc rank A
8 4 7 eqeq12d x = A rank 𝒫 x = suc rank x rank 𝒫 A = suc rank A
9 vex x V
10 9 rankpw rank 𝒫 x = suc rank x
11 8 10 vtoclg A V rank 𝒫 A = suc rank A
12 11 eleq1d A V rank 𝒫 A B suc rank A B
13 12 adantr A V Lim B rank 𝒫 A B suc rank A B
14 2 13 bitr4d A V Lim B rank A B rank 𝒫 A B
15 fvprc ¬ A V rank A =
16 pwexb A V 𝒫 A V
17 fvprc ¬ 𝒫 A V rank 𝒫 A =
18 16 17 sylnbi ¬ A V rank 𝒫 A =
19 15 18 eqtr4d ¬ A V rank A = rank 𝒫 A
20 19 eleq1d ¬ A V rank A B rank 𝒫 A B
21 20 adantr ¬ A V Lim B rank A B rank 𝒫 A B
22 14 21 pm2.61ian Lim B rank A B rank 𝒫 A B