Metamath Proof Explorer


Theorem rankmapu

Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Hypotheses rankxpl.1 A V
rankxpl.2 B V
Assertion rankmapu rank A B suc suc suc rank A B

Proof

Step Hyp Ref Expression
1 rankxpl.1 A V
2 rankxpl.2 B V
3 mapsspw A B 𝒫 B × A
4 2 1 xpex B × A V
5 4 pwex 𝒫 B × A V
6 5 rankss A B 𝒫 B × A rank A B rank 𝒫 B × A
7 3 6 ax-mp rank A B rank 𝒫 B × A
8 4 rankpw rank 𝒫 B × A = suc rank B × A
9 2 1 rankxpu rank B × A suc suc rank B A
10 uncom B A = A B
11 10 fveq2i rank B A = rank A B
12 suceq rank B A = rank A B suc rank B A = suc rank A B
13 11 12 ax-mp suc rank B A = suc rank A B
14 suceq suc rank B A = suc rank A B suc suc rank B A = suc suc rank A B
15 13 14 ax-mp suc suc rank B A = suc suc rank A B
16 9 15 sseqtri rank B × A suc suc rank A B
17 rankon rank B × A On
18 17 onordi Ord rank B × A
19 rankon rank A B On
20 19 onsuci suc rank A B On
21 20 onsuci suc suc rank A B On
22 21 onordi Ord suc suc rank A B
23 ordsucsssuc Ord rank B × A Ord suc suc rank A B rank B × A suc suc rank A B suc rank B × A suc suc suc rank A B
24 18 22 23 mp2an rank B × A suc suc rank A B suc rank B × A suc suc suc rank A B
25 16 24 mpbi suc rank B × A suc suc suc rank A B
26 8 25 eqsstri rank 𝒫 B × A suc suc suc rank A B
27 7 26 sstri rank A B suc suc suc rank A B