Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
|
2 |
1
|
simpri |
|
3 |
|
limord |
|
4 |
2 3
|
ax-mp |
|
5 |
|
ordelon |
|
6 |
4 5
|
mpan |
|
7 |
|
eleq1 |
|
8 |
|
eleq1 |
|
9 |
|
fveq2 |
|
10 |
|
id |
|
11 |
9 10
|
eqeq12d |
|
12 |
8 11
|
anbi12d |
|
13 |
7 12
|
imbi12d |
|
14 |
|
eleq1 |
|
15 |
|
eleq1 |
|
16 |
|
fveq2 |
|
17 |
|
id |
|
18 |
16 17
|
eqeq12d |
|
19 |
15 18
|
anbi12d |
|
20 |
14 19
|
imbi12d |
|
21 |
|
ordtr1 |
|
22 |
4 21
|
ax-mp |
|
23 |
22
|
ancoms |
|
24 |
|
pm5.5 |
|
25 |
23 24
|
syl |
|
26 |
25
|
ralbidva |
|
27 |
|
simplr |
|
28 |
|
ordelon |
|
29 |
4 28
|
mpan |
|
30 |
29
|
ad2antrr |
|
31 |
|
eloni |
|
32 |
30 31
|
syl |
|
33 |
|
ordelsuc |
|
34 |
27 32 33
|
syl2anc |
|
35 |
27 34
|
mpbid |
|
36 |
23
|
adantr |
|
37 |
|
limsuc |
|
38 |
2 37
|
ax-mp |
|
39 |
36 38
|
sylib |
|
40 |
|
simpll |
|
41 |
|
r1ord3g |
|
42 |
39 40 41
|
syl2anc |
|
43 |
35 42
|
mpd |
|
44 |
|
rankidb |
|
45 |
44
|
ad2antrl |
|
46 |
|
suceq |
|
47 |
46
|
ad2antll |
|
48 |
47
|
fveq2d |
|
49 |
45 48
|
eleqtrd |
|
50 |
43 49
|
sseldd |
|
51 |
50
|
ex |
|
52 |
51
|
ralimdva |
|
53 |
52
|
imp |
|
54 |
|
dfss3 |
|
55 |
53 54
|
sylibr |
|
56 |
|
vex |
|
57 |
56
|
elpw |
|
58 |
55 57
|
sylibr |
|
59 |
|
r1sucg |
|
60 |
59
|
adantr |
|
61 |
58 60
|
eleqtrrd |
|
62 |
|
r1elwf |
|
63 |
61 62
|
syl |
|
64 |
|
rankval3b |
|
65 |
63 64
|
syl |
|
66 |
|
eleq1 |
|
67 |
66
|
adantl |
|
68 |
67
|
ralimi |
|
69 |
|
ralbi |
|
70 |
68 69
|
syl |
|
71 |
|
dfss3 |
|
72 |
70 71
|
bitr4di |
|
73 |
72
|
rabbidv |
|
74 |
73
|
inteqd |
|
75 |
74
|
adantl |
|
76 |
29
|
adantr |
|
77 |
|
intmin |
|
78 |
76 77
|
syl |
|
79 |
65 75 78
|
3eqtrd |
|
80 |
63 79
|
jca |
|
81 |
80
|
ex |
|
82 |
26 81
|
sylbid |
|
83 |
82
|
com12 |
|
84 |
83
|
a1i |
|
85 |
13 20 84
|
tfis3 |
|
86 |
6 85
|
mpcom |
|