Metamath Proof Explorer


Theorem rankopb

Description: The rank of an ordered pair. Part of Exercise 4 of Kunen p. 107. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion rankopb A R1 On B R1 On rank A B = suc suc rank A rank B

Proof

Step Hyp Ref Expression
1 dfopg A R1 On B R1 On A B = A A B
2 1 fveq2d A R1 On B R1 On rank A B = rank A A B
3 snwf A R1 On A R1 On
4 prwf A R1 On B R1 On A B R1 On
5 rankprb A R1 On A B R1 On rank A A B = suc rank A rank A B
6 3 4 5 syl2an2r A R1 On B R1 On rank A A B = suc rank A rank A B
7 snsspr1 A A B
8 ssequn1 A A B A A B = A B
9 7 8 mpbi A A B = A B
10 9 fveq2i rank A A B = rank A B
11 rankunb A R1 On A B R1 On rank A A B = rank A rank A B
12 3 4 11 syl2an2r A R1 On B R1 On rank A A B = rank A rank A B
13 rankprb A R1 On B R1 On rank A B = suc rank A rank B
14 10 12 13 3eqtr3a A R1 On B R1 On rank A rank A B = suc rank A rank B
15 suceq rank A rank A B = suc rank A rank B suc rank A rank A B = suc suc rank A rank B
16 14 15 syl A R1 On B R1 On suc rank A rank A B = suc suc rank A rank B
17 2 6 16 3eqtrd A R1 On B R1 On rank A B = suc suc rank A rank B