Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankpr
Metamath Proof Explorer
Description: The rank of an unordered pair. Part of Exercise 30 of Enderton
p. 207. (Contributed by NM , 28-Nov-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypotheses
ranksn.1
⊢ A ∈ V
rankun.2
⊢ B ∈ V
Assertion
rankpr
⊢ rank ⁡ A B = suc ⁡ rank ⁡ A ∪ rank ⁡ B
Proof
Step
Hyp
Ref
Expression
1
ranksn.1
⊢ A ∈ V
2
rankun.2
⊢ B ∈ V
3
unir1
⊢ ⋃ R 1 On = V
4
1 3
eleqtrri
⊢ A ∈ ⋃ R 1 On
5
2 3
eleqtrri
⊢ B ∈ ⋃ R 1 On
6
rankprb
⊢ A ∈ ⋃ R 1 On ∧ B ∈ ⋃ R 1 On → rank ⁡ A B = suc ⁡ rank ⁡ A ∪ rank ⁡ B
7
4 5 6
mp2an
⊢ rank ⁡ A B = suc ⁡ rank ⁡ A ∪ rank ⁡ B