Metamath Proof Explorer


Theorem rankprb

Description: The rank of an unordered pair. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion rankprb A R1 On B R1 On rank A B = suc rank A rank B

Proof

Step Hyp Ref Expression
1 snwf A R1 On A R1 On
2 snwf B R1 On B R1 On
3 rankunb A R1 On B R1 On rank A B = rank A rank B
4 1 2 3 syl2an A R1 On B R1 On rank A B = rank A rank B
5 ranksnb A R1 On rank A = suc rank A
6 ranksnb B R1 On rank B = suc rank B
7 uneq12 rank A = suc rank A rank B = suc rank B rank A rank B = suc rank A suc rank B
8 5 6 7 syl2an A R1 On B R1 On rank A rank B = suc rank A suc rank B
9 4 8 eqtrd A R1 On B R1 On rank A B = suc rank A suc rank B
10 df-pr A B = A B
11 10 fveq2i rank A B = rank A B
12 rankon rank A On
13 12 onordi Ord rank A
14 rankon rank B On
15 14 onordi Ord rank B
16 ordsucun Ord rank A Ord rank B suc rank A rank B = suc rank A suc rank B
17 13 15 16 mp2an suc rank A rank B = suc rank A suc rank B
18 9 11 17 3eqtr4g A R1 On B R1 On rank A B = suc rank A rank B