Metamath Proof Explorer


Theorem rankpw

Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 22-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankpw.1 A V
Assertion rankpw rank 𝒫 A = suc rank A

Proof

Step Hyp Ref Expression
1 rankpw.1 A V
2 unir1 R1 On = V
3 1 2 eleqtrri A R1 On
4 rankpwi A R1 On rank 𝒫 A = suc rank A
5 3 4 ax-mp rank 𝒫 A = suc rank A