Metamath Proof Explorer


Theorem rankpwi

Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 3-Jun-2013)

Ref Expression
Assertion rankpwi A R1 On rank 𝒫 A = suc rank A

Proof

Step Hyp Ref Expression
1 rankidn A R1 On ¬ A R1 rank A
2 rankon rank A On
3 r1suc rank A On R1 suc rank A = 𝒫 R1 rank A
4 2 3 ax-mp R1 suc rank A = 𝒫 R1 rank A
5 4 eleq2i 𝒫 A R1 suc rank A 𝒫 A 𝒫 R1 rank A
6 elpwi 𝒫 A 𝒫 R1 rank A 𝒫 A R1 rank A
7 pwidg A R1 On A 𝒫 A
8 ssel 𝒫 A R1 rank A A 𝒫 A A R1 rank A
9 6 7 8 syl2imc A R1 On 𝒫 A 𝒫 R1 rank A A R1 rank A
10 5 9 syl5bi A R1 On 𝒫 A R1 suc rank A A R1 rank A
11 1 10 mtod A R1 On ¬ 𝒫 A R1 suc rank A
12 r1rankidb A R1 On A R1 rank A
13 12 sspwd A R1 On 𝒫 A 𝒫 R1 rank A
14 13 4 sseqtrrdi A R1 On 𝒫 A R1 suc rank A
15 fvex R1 suc rank A V
16 15 elpw2 𝒫 A 𝒫 R1 suc rank A 𝒫 A R1 suc rank A
17 14 16 sylibr A R1 On 𝒫 A 𝒫 R1 suc rank A
18 2 onsuci suc rank A On
19 r1suc suc rank A On R1 suc suc rank A = 𝒫 R1 suc rank A
20 18 19 ax-mp R1 suc suc rank A = 𝒫 R1 suc rank A
21 17 20 eleqtrrdi A R1 On 𝒫 A R1 suc suc rank A
22 pwwf A R1 On 𝒫 A R1 On
23 rankr1c 𝒫 A R1 On suc rank A = rank 𝒫 A ¬ 𝒫 A R1 suc rank A 𝒫 A R1 suc suc rank A
24 22 23 sylbi A R1 On suc rank A = rank 𝒫 A ¬ 𝒫 A R1 suc rank A 𝒫 A R1 suc suc rank A
25 11 21 24 mpbir2and A R1 On suc rank A = rank 𝒫 A
26 25 eqcomd A R1 On rank 𝒫 A = suc rank A