Metamath Proof Explorer


Theorem rankr1

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankid.1 A V
Assertion rankr1 B = rank A ¬ A R1 B A R1 suc B

Proof

Step Hyp Ref Expression
1 rankid.1 A V
2 rankr1g A V B = rank A ¬ A R1 B A R1 suc B
3 1 2 ax-mp B = rank A ¬ A R1 B A R1 suc B