Metamath Proof Explorer


Theorem rankr1a

Description: A relationship between rank and R1 , clearly equivalent to ssrankr1 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b for the subset version. (Contributed by Raph Levien, 29-May-2004)

Ref Expression
Hypothesis rankid.1 AV
Assertion rankr1a BOnAR1BrankAB

Proof

Step Hyp Ref Expression
1 rankid.1 AV
2 1 ssrankr1 BOnBrankA¬AR1B
3 rankon rankAOn
4 ontri1 BOnrankAOnBrankA¬rankAB
5 3 4 mpan2 BOnBrankA¬rankAB
6 2 5 bitr3d BOn¬AR1B¬rankAB
7 6 con4bid BOnAR1BrankAB