Metamath Proof Explorer


Theorem rankr1a

Description: A relationship between rank and R1 , clearly equivalent to ssrankr1 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b for the subset version. (Contributed by Raph Levien, 29-May-2004)

Ref Expression
Hypothesis rankid.1 A V
Assertion rankr1a B On A R1 B rank A B

Proof

Step Hyp Ref Expression
1 rankid.1 A V
2 1 ssrankr1 B On B rank A ¬ A R1 B
3 rankon rank A On
4 ontri1 B On rank A On B rank A ¬ rank A B
5 3 4 mpan2 B On B rank A ¬ rank A B
6 2 5 bitr3d B On ¬ A R1 B ¬ rank A B
7 6 con4bid B On A R1 B rank A B