Metamath Proof Explorer


Theorem rankr1ag

Description: A version of rankr1a that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1ag A R1 On B dom R1 A R1 B rank A B

Proof

Step Hyp Ref Expression
1 rankr1ai A R1 B rank A B
2 r1funlim Fun R1 Lim dom R1
3 2 simpri Lim dom R1
4 limord Lim dom R1 Ord dom R1
5 3 4 ax-mp Ord dom R1
6 ordelord Ord dom R1 B dom R1 Ord B
7 5 6 mpan B dom R1 Ord B
8 7 adantl A R1 On B dom R1 Ord B
9 ordsucss Ord B rank A B suc rank A B
10 8 9 syl A R1 On B dom R1 rank A B suc rank A B
11 rankidb A R1 On A R1 suc rank A
12 elfvdm A R1 suc rank A suc rank A dom R1
13 11 12 syl A R1 On suc rank A dom R1
14 r1ord3g suc rank A dom R1 B dom R1 suc rank A B R1 suc rank A R1 B
15 13 14 sylan A R1 On B dom R1 suc rank A B R1 suc rank A R1 B
16 11 adantr A R1 On B dom R1 A R1 suc rank A
17 ssel R1 suc rank A R1 B A R1 suc rank A A R1 B
18 16 17 syl5com A R1 On B dom R1 R1 suc rank A R1 B A R1 B
19 10 15 18 3syld A R1 On B dom R1 rank A B A R1 B
20 1 19 impbid2 A R1 On B dom R1 A R1 B rank A B