Metamath Proof Explorer


Theorem rankr1ai

Description: One direction of rankr1a . (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1ai A R1 B rank A B

Proof

Step Hyp Ref Expression
1 elfvdm A R1 B B dom R1
2 r1val1 B dom R1 R1 B = x B 𝒫 R1 x
3 2 eleq2d B dom R1 A R1 B A x B 𝒫 R1 x
4 eliun A x B 𝒫 R1 x x B A 𝒫 R1 x
5 3 4 bitrdi B dom R1 A R1 B x B A 𝒫 R1 x
6 r1funlim Fun R1 Lim dom R1
7 6 simpri Lim dom R1
8 limord Lim dom R1 Ord dom R1
9 7 8 ax-mp Ord dom R1
10 ordtr1 Ord dom R1 x B B dom R1 x dom R1
11 9 10 ax-mp x B B dom R1 x dom R1
12 11 ancoms B dom R1 x B x dom R1
13 r1sucg x dom R1 R1 suc x = 𝒫 R1 x
14 13 eleq2d x dom R1 A R1 suc x A 𝒫 R1 x
15 12 14 syl B dom R1 x B A R1 suc x A 𝒫 R1 x
16 ordsson Ord dom R1 dom R1 On
17 9 16 ax-mp dom R1 On
18 17 12 sselid B dom R1 x B x On
19 rabid x x On | A R1 suc x x On A R1 suc x
20 intss1 x x On | A R1 suc x x On | A R1 suc x x
21 19 20 sylbir x On A R1 suc x x On | A R1 suc x x
22 18 21 sylan B dom R1 x B A R1 suc x x On | A R1 suc x x
23 22 ex B dom R1 x B A R1 suc x x On | A R1 suc x x
24 15 23 sylbird B dom R1 x B A 𝒫 R1 x x On | A R1 suc x x
25 24 reximdva B dom R1 x B A 𝒫 R1 x x B x On | A R1 suc x x
26 5 25 sylbid B dom R1 A R1 B x B x On | A R1 suc x x
27 1 26 mpcom A R1 B x B x On | A R1 suc x x
28 r1elwf A R1 B A R1 On
29 rankvalb A R1 On rank A = x On | A R1 suc x
30 28 29 syl A R1 B rank A = x On | A R1 suc x
31 30 sseq1d A R1 B rank A x x On | A R1 suc x x
32 31 adantr A R1 B x B rank A x x On | A R1 suc x x
33 rankon rank A On
34 17 1 sselid A R1 B B On
35 ontr2 rank A On B On rank A x x B rank A B
36 33 34 35 sylancr A R1 B rank A x x B rank A B
37 36 expcomd A R1 B x B rank A x rank A B
38 37 imp A R1 B x B rank A x rank A B
39 32 38 sylbird A R1 B x B x On | A R1 suc x x rank A B
40 39 rexlimdva A R1 B x B x On | A R1 suc x x rank A B
41 27 40 mpd A R1 B rank A B