Metamath Proof Explorer


Theorem rankr1b

Description: A relationship between rank and R1 . See rankr1a for the membership version. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankr1b B On A R1 B rank A B

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 r1fnon R1 Fn On
3 2 fndmi dom R1 = On
4 3 eleq2i B dom R1 B On
5 unir1 R1 On = V
6 1 5 eleqtrri A R1 On
7 rankr1bg A R1 On B dom R1 A R1 B rank A B
8 6 7 mpan B dom R1 A R1 B rank A B
9 4 8 sylbir B On A R1 B rank A B