Metamath Proof Explorer


Theorem rankr1c

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1c AR1OnB=rankA¬AR1BAR1sucB

Proof

Step Hyp Ref Expression
1 id B=rankAB=rankA
2 rankdmr1 rankAdomR1
3 1 2 eqeltrdi B=rankABdomR1
4 3 a1i AR1OnB=rankABdomR1
5 elfvdm AR1sucBsucBdomR1
6 r1funlim FunR1LimdomR1
7 6 simpri LimdomR1
8 limsuc LimdomR1BdomR1sucBdomR1
9 7 8 ax-mp BdomR1sucBdomR1
10 5 9 sylibr AR1sucBBdomR1
11 10 adantl ¬AR1BAR1sucBBdomR1
12 11 a1i AR1On¬AR1BAR1sucBBdomR1
13 eqss B=rankABrankArankAB
14 rankr1clem AR1OnBdomR1¬AR1BBrankA
15 rankr1ag AR1OnsucBdomR1AR1sucBrankAsucB
16 9 15 sylan2b AR1OnBdomR1AR1sucBrankAsucB
17 rankon rankAOn
18 limord LimdomR1OrddomR1
19 7 18 ax-mp OrddomR1
20 ordelon OrddomR1BdomR1BOn
21 19 20 mpan BdomR1BOn
22 21 adantl AR1OnBdomR1BOn
23 onsssuc rankAOnBOnrankABrankAsucB
24 17 22 23 sylancr AR1OnBdomR1rankABrankAsucB
25 16 24 bitr4d AR1OnBdomR1AR1sucBrankAB
26 14 25 anbi12d AR1OnBdomR1¬AR1BAR1sucBBrankArankAB
27 13 26 bitr4id AR1OnBdomR1B=rankA¬AR1BAR1sucB
28 27 ex AR1OnBdomR1B=rankA¬AR1BAR1sucB
29 4 12 28 pm5.21ndd AR1OnB=rankA¬AR1BAR1sucB