Metamath Proof Explorer


Theorem rankr1c

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1c A R1 On B = rank A ¬ A R1 B A R1 suc B

Proof

Step Hyp Ref Expression
1 id B = rank A B = rank A
2 rankdmr1 rank A dom R1
3 1 2 eqeltrdi B = rank A B dom R1
4 3 a1i A R1 On B = rank A B dom R1
5 elfvdm A R1 suc B suc B dom R1
6 r1funlim Fun R1 Lim dom R1
7 6 simpri Lim dom R1
8 limsuc Lim dom R1 B dom R1 suc B dom R1
9 7 8 ax-mp B dom R1 suc B dom R1
10 5 9 sylibr A R1 suc B B dom R1
11 10 adantl ¬ A R1 B A R1 suc B B dom R1
12 11 a1i A R1 On ¬ A R1 B A R1 suc B B dom R1
13 eqss B = rank A B rank A rank A B
14 rankr1clem A R1 On B dom R1 ¬ A R1 B B rank A
15 rankr1ag A R1 On suc B dom R1 A R1 suc B rank A suc B
16 9 15 sylan2b A R1 On B dom R1 A R1 suc B rank A suc B
17 rankon rank A On
18 limord Lim dom R1 Ord dom R1
19 7 18 ax-mp Ord dom R1
20 ordelon Ord dom R1 B dom R1 B On
21 19 20 mpan B dom R1 B On
22 21 adantl A R1 On B dom R1 B On
23 onsssuc rank A On B On rank A B rank A suc B
24 17 22 23 sylancr A R1 On B dom R1 rank A B rank A suc B
25 16 24 bitr4d A R1 On B dom R1 A R1 suc B rank A B
26 14 25 anbi12d A R1 On B dom R1 ¬ A R1 B A R1 suc B B rank A rank A B
27 13 26 bitr4id A R1 On B dom R1 B = rank A ¬ A R1 B A R1 suc B
28 27 ex A R1 On B dom R1 B = rank A ¬ A R1 B A R1 suc B
29 4 12 28 pm5.21ndd A R1 On B = rank A ¬ A R1 B A R1 suc B