Metamath Proof Explorer


Theorem rankr1clem

Description: Lemma for rankr1c . (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1clem AR1OnBdomR1¬AR1BBrankA

Proof

Step Hyp Ref Expression
1 rankr1ag AR1OnBdomR1AR1BrankAB
2 1 notbid AR1OnBdomR1¬AR1B¬rankAB
3 r1funlim FunR1LimdomR1
4 3 simpri LimdomR1
5 limord LimdomR1OrddomR1
6 4 5 ax-mp OrddomR1
7 ordelon OrddomR1BdomR1BOn
8 6 7 mpan BdomR1BOn
9 8 adantl AR1OnBdomR1BOn
10 rankon rankAOn
11 ontri1 BOnrankAOnBrankA¬rankAB
12 9 10 11 sylancl AR1OnBdomR1BrankA¬rankAB
13 2 12 bitr4d AR1OnBdomR1¬AR1BBrankA