Metamath Proof Explorer


Theorem rankr1clem

Description: Lemma for rankr1c . (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1clem A R1 On B dom R1 ¬ A R1 B B rank A

Proof

Step Hyp Ref Expression
1 rankr1ag A R1 On B dom R1 A R1 B rank A B
2 1 notbid A R1 On B dom R1 ¬ A R1 B ¬ rank A B
3 r1funlim Fun R1 Lim dom R1
4 3 simpri Lim dom R1
5 limord Lim dom R1 Ord dom R1
6 4 5 ax-mp Ord dom R1
7 ordelon Ord dom R1 B dom R1 B On
8 6 7 mpan B dom R1 B On
9 8 adantl A R1 On B dom R1 B On
10 rankon rank A On
11 ontri1 B On rank A On B rank A ¬ rank A B
12 9 10 11 sylancl A R1 On B dom R1 B rank A ¬ rank A B
13 2 12 bitr4d A R1 On B dom R1 ¬ A R1 B B rank A