Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankr1g
Metamath Proof Explorer
Description: A relationship between the rank function and the cumulative hierarchy of
sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79.
(Contributed by NM , 6-Oct-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Assertion
rankr1g
⊢ A ∈ V → B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B
Proof
Step
Hyp
Ref
Expression
1
elex
⊢ A ∈ V → A ∈ V
2
unir1
⊢ ⋃ R 1 On = V
3
1 2
eleqtrrdi
⊢ A ∈ V → A ∈ ⋃ R 1 On
4
rankr1c
⊢ A ∈ ⋃ R 1 On → B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B
5
3 4
syl
⊢ A ∈ V → B = rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B ∧ A ∈ R 1 ⁡ suc ⁡ B