Metamath Proof Explorer


Theorem rankr1g

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1g A V B = rank A ¬ A R1 B A R1 suc B

Proof

Step Hyp Ref Expression
1 elex A V A V
2 unir1 R1 On = V
3 1 2 eleqtrrdi A V A R1 On
4 rankr1c A R1 On B = rank A ¬ A R1 B A R1 suc B
5 3 4 syl A V B = rank A ¬ A R1 B A R1 suc B