Metamath Proof Explorer


Theorem rankr1id

Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1id A dom R1 rank R1 A = A

Proof

Step Hyp Ref Expression
1 ssid R1 A R1 A
2 fvex R1 A V
3 2 pwid R1 A 𝒫 R1 A
4 r1sucg A dom R1 R1 suc A = 𝒫 R1 A
5 3 4 eleqtrrid A dom R1 R1 A R1 suc A
6 r1elwf R1 A R1 suc A R1 A R1 On
7 5 6 syl A dom R1 R1 A R1 On
8 rankr1bg R1 A R1 On A dom R1 R1 A R1 A rank R1 A A
9 7 8 mpancom A dom R1 R1 A R1 A rank R1 A A
10 1 9 mpbii A dom R1 rank R1 A A
11 rankonid A dom R1 rank A = A
12 11 biimpi A dom R1 rank A = A
13 onssr1 A dom R1 A R1 A
14 rankssb R1 A R1 On A R1 A rank A rank R1 A
15 7 13 14 sylc A dom R1 rank A rank R1 A
16 12 15 eqsstrrd A dom R1 A rank R1 A
17 10 16 eqssd A dom R1 rank R1 A = A
18 id rank R1 A = A rank R1 A = A
19 rankdmr1 rank R1 A dom R1
20 18 19 eqeltrrdi rank R1 A = A A dom R1
21 17 20 impbii A dom R1 rank R1 A = A