Metamath Proof Explorer


Theorem ranksnb

Description: The rank of a singleton. Theorem 15.17(v) of Monk1 p. 112. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion ranksnb A R1 On rank A = suc rank A

Proof

Step Hyp Ref Expression
1 fveq2 y = A rank y = rank A
2 1 eleq1d y = A rank y x rank A x
3 2 ralsng A R1 On y A rank y x rank A x
4 3 rabbidv A R1 On x On | y A rank y x = x On | rank A x
5 4 inteqd A R1 On x On | y A rank y x = x On | rank A x
6 snwf A R1 On A R1 On
7 rankval3b A R1 On rank A = x On | y A rank y x
8 6 7 syl A R1 On rank A = x On | y A rank y x
9 rankon rank A On
10 onsucmin rank A On suc rank A = x On | rank A x
11 9 10 mp1i A R1 On suc rank A = x On | rank A x
12 5 8 11 3eqtr4d A R1 On rank A = suc rank A