Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankss
Metamath Proof Explorer
Description: The subset relation is inherited by the rank function. Exercise 1 of
TakeutiZaring p. 80. (Contributed by NM , 25-Nov-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypothesis
rankss.1
⊢ B ∈ V
Assertion
rankss
⊢ A ⊆ B → rank ⁡ A ⊆ rank ⁡ B
Proof
Step
Hyp
Ref
Expression
1
rankss.1
⊢ B ∈ V
2
unir1
⊢ ⋃ R 1 On = V
3
1 2
eleqtrri
⊢ B ∈ ⋃ R 1 On
4
rankssb
⊢ B ∈ ⋃ R 1 On → A ⊆ B → rank ⁡ A ⊆ rank ⁡ B
5
3 4
ax-mp
⊢ A ⊆ B → rank ⁡ A ⊆ rank ⁡ B