Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
ranksuc
Next ⟩
rankuniss
Metamath Proof Explorer
Ascii
Unicode
Theorem
ranksuc
Description:
The rank of a successor.
(Contributed by
NM
, 18-Sep-2006)
Ref
Expression
Hypothesis
rankr1b.1
⊢
A
∈
V
Assertion
ranksuc
⊢
rank
⁡
suc
⁡
A
=
suc
⁡
rank
⁡
A
Proof
Step
Hyp
Ref
Expression
1
rankr1b.1
⊢
A
∈
V
2
df-suc
⊢
suc
⁡
A
=
A
∪
A
3
2
fveq2i
⊢
rank
⁡
suc
⁡
A
=
rank
⁡
A
∪
A
4
snex
⊢
A
∈
V
5
1
4
rankun
⊢
rank
⁡
A
∪
A
=
rank
⁡
A
∪
rank
⁡
A
6
1
ranksn
⊢
rank
⁡
A
=
suc
⁡
rank
⁡
A
7
6
uneq2i
⊢
rank
⁡
A
∪
rank
⁡
A
=
rank
⁡
A
∪
suc
⁡
rank
⁡
A
8
sssucid
⊢
rank
⁡
A
⊆
suc
⁡
rank
⁡
A
9
ssequn1
⊢
rank
⁡
A
⊆
suc
⁡
rank
⁡
A
↔
rank
⁡
A
∪
suc
⁡
rank
⁡
A
=
suc
⁡
rank
⁡
A
10
8
9
mpbi
⊢
rank
⁡
A
∪
suc
⁡
rank
⁡
A
=
suc
⁡
rank
⁡
A
11
7
10
eqtri
⊢
rank
⁡
A
∪
rank
⁡
A
=
suc
⁡
rank
⁡
A
12
5
11
eqtri
⊢
rank
⁡
A
∪
A
=
suc
⁡
rank
⁡
A
13
3
12
eqtri
⊢
rank
⁡
suc
⁡
A
=
suc
⁡
rank
⁡
A