Metamath Proof Explorer


Theorem ranksuc

Description: The rank of a successor. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion ranksuc rank suc A = suc rank A

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 df-suc suc A = A A
3 2 fveq2i rank suc A = rank A A
4 snex A V
5 1 4 rankun rank A A = rank A rank A
6 1 ranksn rank A = suc rank A
7 6 uneq2i rank A rank A = rank A suc rank A
8 sssucid rank A suc rank A
9 ssequn1 rank A suc rank A rank A suc rank A = suc rank A
10 8 9 mpbi rank A suc rank A = suc rank A
11 7 10 eqtri rank A rank A = suc rank A
12 5 11 eqtri rank A A = suc rank A
13 3 12 eqtri rank suc A = suc rank A