Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankun
Metamath Proof Explorer
Description: The rank of the union of two sets. Theorem 15.17(iii) of Monk1
p. 112. (Contributed by NM , 26-Nov-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypotheses
ranksn.1
⊢ A ∈ V
rankun.2
⊢ B ∈ V
Assertion
rankun
⊢ rank ⁡ A ∪ B = rank ⁡ A ∪ rank ⁡ B
Proof
Step
Hyp
Ref
Expression
1
ranksn.1
⊢ A ∈ V
2
rankun.2
⊢ B ∈ V
3
unir1
⊢ ⋃ R 1 On = V
4
1 3
eleqtrri
⊢ A ∈ ⋃ R 1 On
5
2 3
eleqtrri
⊢ B ∈ ⋃ R 1 On
6
rankunb
⊢ A ∈ ⋃ R 1 On ∧ B ∈ ⋃ R 1 On → rank ⁡ A ∪ B = rank ⁡ A ∪ rank ⁡ B
7
4 5 6
mp2an
⊢ rank ⁡ A ∪ B = rank ⁡ A ∪ rank ⁡ B