Metamath Proof Explorer


Theorem rankunb

Description: The rank of the union of two sets. Theorem 15.17(iii) of Monk1 p. 112. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankunb A R1 On B R1 On rank A B = rank A rank B

Proof

Step Hyp Ref Expression
1 unwf A R1 On B R1 On A B R1 On
2 rankval3b A B R1 On rank A B = y On | x A B rank x y
3 1 2 sylbi A R1 On B R1 On rank A B = y On | x A B rank x y
4 3 eleq2d A R1 On B R1 On x rank A B x y On | x A B rank x y
5 vex x V
6 5 elintrab x y On | x A B rank x y y On x A B rank x y x y
7 4 6 bitrdi A R1 On B R1 On x rank A B y On x A B rank x y x y
8 elun x A B x A x B
9 rankelb A R1 On x A rank x rank A
10 elun1 rank x rank A rank x rank A rank B
11 9 10 syl6 A R1 On x A rank x rank A rank B
12 rankelb B R1 On x B rank x rank B
13 elun2 rank x rank B rank x rank A rank B
14 12 13 syl6 B R1 On x B rank x rank A rank B
15 11 14 jaao A R1 On B R1 On x A x B rank x rank A rank B
16 8 15 syl5bi A R1 On B R1 On x A B rank x rank A rank B
17 16 ralrimiv A R1 On B R1 On x A B rank x rank A rank B
18 rankon rank A On
19 rankon rank B On
20 18 19 onun2i rank A rank B On
21 eleq2 y = rank A rank B rank x y rank x rank A rank B
22 21 ralbidv y = rank A rank B x A B rank x y x A B rank x rank A rank B
23 eleq2 y = rank A rank B x y x rank A rank B
24 22 23 imbi12d y = rank A rank B x A B rank x y x y x A B rank x rank A rank B x rank A rank B
25 24 rspcv rank A rank B On y On x A B rank x y x y x A B rank x rank A rank B x rank A rank B
26 20 25 ax-mp y On x A B rank x y x y x A B rank x rank A rank B x rank A rank B
27 17 26 syl5com A R1 On B R1 On y On x A B rank x y x y x rank A rank B
28 7 27 sylbid A R1 On B R1 On x rank A B x rank A rank B
29 28 ssrdv A R1 On B R1 On rank A B rank A rank B
30 ssun1 A A B
31 rankssb A B R1 On A A B rank A rank A B
32 30 31 mpi A B R1 On rank A rank A B
33 ssun2 B A B
34 rankssb A B R1 On B A B rank B rank A B
35 33 34 mpi A B R1 On rank B rank A B
36 32 35 unssd A B R1 On rank A rank B rank A B
37 1 36 sylbi A R1 On B R1 On rank A rank B rank A B
38 29 37 eqssd A R1 On B R1 On rank A B = rank A rank B