Metamath Proof Explorer


Theorem rankuni

Description: The rank of a union. Part of Exercise 4 of Kunen p. 107. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankuni rank A = rank A

Proof

Step Hyp Ref Expression
1 unieq x = A x = A
2 1 fveq2d x = A rank x = rank A
3 fveq2 x = A rank x = rank A
4 3 unieqd x = A rank x = rank A
5 2 4 eqeq12d x = A rank x = rank x rank A = rank A
6 vex x V
7 6 rankuni2 rank x = z x rank z
8 fvex rank z V
9 8 dfiun2 z x rank z = y | z x y = rank z
10 7 9 eqtri rank x = y | z x y = rank z
11 df-rex z x y = rank z z z x y = rank z
12 6 rankel z x rank z rank x
13 12 anim1i z x y = rank z rank z rank x y = rank z
14 13 eximi z z x y = rank z z rank z rank x y = rank z
15 19.42v z y rank x y = rank z y rank x z y = rank z
16 eleq1 y = rank z y rank x rank z rank x
17 16 pm5.32ri y rank x y = rank z rank z rank x y = rank z
18 17 exbii z y rank x y = rank z z rank z rank x y = rank z
19 simpl y rank x z y = rank z y rank x
20 rankon rank x On
21 20 oneli y rank x y On
22 r1fnon R1 Fn On
23 fndm R1 Fn On dom R1 = On
24 22 23 ax-mp dom R1 = On
25 21 24 eleqtrrdi y rank x y dom R1
26 rankr1id y dom R1 rank R1 y = y
27 25 26 sylib y rank x rank R1 y = y
28 27 eqcomd y rank x y = rank R1 y
29 fvex R1 y V
30 fveq2 z = R1 y rank z = rank R1 y
31 30 eqeq2d z = R1 y y = rank z y = rank R1 y
32 29 31 spcev y = rank R1 y z y = rank z
33 28 32 syl y rank x z y = rank z
34 33 ancli y rank x y rank x z y = rank z
35 19 34 impbii y rank x z y = rank z y rank x
36 15 18 35 3bitr3i z rank z rank x y = rank z y rank x
37 14 36 sylib z z x y = rank z y rank x
38 11 37 sylbi z x y = rank z y rank x
39 38 abssi y | z x y = rank z rank x
40 39 unissi y | z x y = rank z rank x
41 10 40 eqsstri rank x rank x
42 pwuni x 𝒫 x
43 vuniex x V
44 43 pwex 𝒫 x V
45 44 rankss x 𝒫 x rank x rank 𝒫 x
46 42 45 ax-mp rank x rank 𝒫 x
47 43 rankpw rank 𝒫 x = suc rank x
48 46 47 sseqtri rank x suc rank x
49 48 unissi rank x suc rank x
50 rankon rank x On
51 50 onunisuci suc rank x = rank x
52 49 51 sseqtri rank x rank x
53 41 52 eqssi rank x = rank x
54 5 53 vtoclg A V rank A = rank A
55 uniexb A V A V
56 fvprc ¬ A V rank A =
57 55 56 sylnbi ¬ A V rank A =
58 uni0 =
59 57 58 eqtr4di ¬ A V rank A =
60 fvprc ¬ A V rank A =
61 60 unieqd ¬ A V rank A =
62 59 61 eqtr4d ¬ A V rank A = rank A
63 54 62 pm2.61i rank A = rank A