Step |
Hyp |
Ref |
Expression |
1 |
|
unieq |
|
2 |
1
|
fveq2d |
|
3 |
|
fveq2 |
|
4 |
3
|
unieqd |
|
5 |
2 4
|
eqeq12d |
|
6 |
|
vex |
|
7 |
6
|
rankuni2 |
|
8 |
|
fvex |
|
9 |
8
|
dfiun2 |
|
10 |
7 9
|
eqtri |
|
11 |
|
df-rex |
|
12 |
6
|
rankel |
|
13 |
12
|
anim1i |
|
14 |
13
|
eximi |
|
15 |
|
19.42v |
|
16 |
|
eleq1 |
|
17 |
16
|
pm5.32ri |
|
18 |
17
|
exbii |
|
19 |
|
simpl |
|
20 |
|
rankon |
|
21 |
20
|
oneli |
|
22 |
|
r1fnon |
|
23 |
|
fndm |
|
24 |
22 23
|
ax-mp |
|
25 |
21 24
|
eleqtrrdi |
|
26 |
|
rankr1id |
|
27 |
25 26
|
sylib |
|
28 |
27
|
eqcomd |
|
29 |
|
fvex |
|
30 |
|
fveq2 |
|
31 |
30
|
eqeq2d |
|
32 |
29 31
|
spcev |
|
33 |
28 32
|
syl |
|
34 |
33
|
ancli |
|
35 |
19 34
|
impbii |
|
36 |
15 18 35
|
3bitr3i |
|
37 |
14 36
|
sylib |
|
38 |
11 37
|
sylbi |
|
39 |
38
|
abssi |
|
40 |
39
|
unissi |
|
41 |
10 40
|
eqsstri |
|
42 |
|
pwuni |
|
43 |
|
vuniex |
|
44 |
43
|
pwex |
|
45 |
44
|
rankss |
|
46 |
42 45
|
ax-mp |
|
47 |
43
|
rankpw |
|
48 |
46 47
|
sseqtri |
|
49 |
48
|
unissi |
|
50 |
|
rankon |
|
51 |
50
|
onunisuci |
|
52 |
49 51
|
sseqtri |
|
53 |
41 52
|
eqssi |
|
54 |
5 53
|
vtoclg |
|
55 |
|
uniexb |
|
56 |
|
fvprc |
|
57 |
55 56
|
sylnbi |
|
58 |
|
uni0 |
|
59 |
57 58
|
eqtr4di |
|
60 |
|
fvprc |
|
61 |
60
|
unieqd |
|
62 |
59 61
|
eqtr4d |
|
63 |
54 62
|
pm2.61i |
|