Metamath Proof Explorer


Theorem rankuni2b

Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion rankuni2b A R1 On rank A = x A rank x

Proof

Step Hyp Ref Expression
1 uniwf A R1 On A R1 On
2 rankval3b A R1 On rank A = z On | y A rank y z
3 1 2 sylbi A R1 On rank A = z On | y A rank y z
4 eleq2 z = x A rank x rank y z rank y x A rank x
5 4 ralbidv z = x A rank x y A rank y z y A rank y x A rank x
6 iuneq1 y = A x y rank x = x A rank x
7 6 eleq1d y = A x y rank x On x A rank x On
8 vex y V
9 rankon rank x On
10 9 rgenw x y rank x On
11 iunon y V x y rank x On x y rank x On
12 8 10 11 mp2an x y rank x On
13 7 12 vtoclg A R1 On x A rank x On
14 eluni2 y A x A y x
15 nfv x A R1 On
16 nfiu1 _ x x A rank x
17 16 nfel2 x rank y x A rank x
18 r1elssi A R1 On A R1 On
19 18 sseld A R1 On x A x R1 On
20 rankelb x R1 On y x rank y rank x
21 19 20 syl6 A R1 On x A y x rank y rank x
22 ssiun2 x A rank x x A rank x
23 22 sseld x A rank y rank x rank y x A rank x
24 23 a1i A R1 On x A rank y rank x rank y x A rank x
25 21 24 syldd A R1 On x A y x rank y x A rank x
26 15 17 25 rexlimd A R1 On x A y x rank y x A rank x
27 14 26 syl5bi A R1 On y A rank y x A rank x
28 27 ralrimiv A R1 On y A rank y x A rank x
29 5 13 28 elrabd A R1 On x A rank x z On | y A rank y z
30 intss1 x A rank x z On | y A rank y z z On | y A rank y z x A rank x
31 29 30 syl A R1 On z On | y A rank y z x A rank x
32 3 31 eqsstrd A R1 On rank A x A rank x
33 1 biimpi A R1 On A R1 On
34 elssuni x A x A
35 rankssb A R1 On x A rank x rank A
36 33 34 35 syl2im A R1 On x A rank x rank A
37 36 ralrimiv A R1 On x A rank x rank A
38 iunss x A rank x rank A x A rank x rank A
39 37 38 sylibr A R1 On x A rank x rank A
40 32 39 eqssd A R1 On rank A = x A rank x