Metamath Proof Explorer


Theorem rankuniss

Description: Upper bound of the rank of a union. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 30-Nov-2003)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankuniss rank A rank A

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 rankuni rank A = rank A
3 rankon rank A On
4 3 onordi Ord rank A
5 orduniss Ord rank A rank A rank A
6 4 5 ax-mp rank A rank A
7 2 6 eqsstri rank A rank A