Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankval
Metamath Proof Explorer
Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79
(proved as a theorem from our definition). (Contributed by NM , 24-Sep-2003) (Revised by Mario Carneiro , 10-Sep-2013)
Ref
Expression
Hypothesis
rankval.1
⊢ A ∈ V
Assertion
rankval
⊢ rank ⁡ A = ⋂ x ∈ On | A ∈ R 1 ⁡ suc ⁡ x
Proof
Step
Hyp
Ref
Expression
1
rankval.1
⊢ A ∈ V
2
unir1
⊢ ⋃ R 1 On = V
3
1 2
eleqtrri
⊢ A ∈ ⋃ R 1 On
4
rankvalb
⊢ A ∈ ⋃ R 1 On → rank ⁡ A = ⋂ x ∈ On | A ∈ R 1 ⁡ suc ⁡ x
5
3 4
ax-mp
⊢ rank ⁡ A = ⋂ x ∈ On | A ∈ R 1 ⁡ suc ⁡ x