Metamath Proof Explorer


Theorem rankval3b

Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankval3b A R1 On rank A = x On | y A rank y x

Proof

Step Hyp Ref Expression
1 rankon rank A On
2 simprl A R1 On x On y A rank y x x On
3 ontri1 rank A On x On rank A x ¬ x rank A
4 1 2 3 sylancr A R1 On x On y A rank y x rank A x ¬ x rank A
5 4 con2bid A R1 On x On y A rank y x x rank A ¬ rank A x
6 r1elssi A R1 On A R1 On
7 6 adantr A R1 On x rank A A R1 On
8 7 sselda A R1 On x rank A y A y R1 On
9 rankdmr1 rank A dom R1
10 r1funlim Fun R1 Lim dom R1
11 10 simpri Lim dom R1
12 limord Lim dom R1 Ord dom R1
13 ordtr1 Ord dom R1 x rank A rank A dom R1 x dom R1
14 11 12 13 mp2b x rank A rank A dom R1 x dom R1
15 9 14 mpan2 x rank A x dom R1
16 15 ad2antlr A R1 On x rank A y A x dom R1
17 rankr1ag y R1 On x dom R1 y R1 x rank y x
18 8 16 17 syl2anc A R1 On x rank A y A y R1 x rank y x
19 18 ralbidva A R1 On x rank A y A y R1 x y A rank y x
20 19 biimpar A R1 On x rank A y A rank y x y A y R1 x
21 20 an32s A R1 On y A rank y x x rank A y A y R1 x
22 dfss3 A R1 x y A y R1 x
23 21 22 sylibr A R1 On y A rank y x x rank A A R1 x
24 simpll A R1 On y A rank y x x rank A A R1 On
25 15 adantl A R1 On y A rank y x x rank A x dom R1
26 rankr1bg A R1 On x dom R1 A R1 x rank A x
27 24 25 26 syl2anc A R1 On y A rank y x x rank A A R1 x rank A x
28 23 27 mpbid A R1 On y A rank y x x rank A rank A x
29 28 ex A R1 On y A rank y x x rank A rank A x
30 29 adantrl A R1 On x On y A rank y x x rank A rank A x
31 5 30 sylbird A R1 On x On y A rank y x ¬ rank A x rank A x
32 31 pm2.18d A R1 On x On y A rank y x rank A x
33 32 ex A R1 On x On y A rank y x rank A x
34 33 alrimiv A R1 On x x On y A rank y x rank A x
35 ssintab rank A x | x On y A rank y x x x On y A rank y x rank A x
36 34 35 sylibr A R1 On rank A x | x On y A rank y x
37 df-rab x On | y A rank y x = x | x On y A rank y x
38 37 inteqi x On | y A rank y x = x | x On y A rank y x
39 36 38 sseqtrrdi A R1 On rank A x On | y A rank y x
40 rankelb A R1 On y A rank y rank A
41 40 ralrimiv A R1 On y A rank y rank A
42 eleq2 x = rank A rank y x rank y rank A
43 42 ralbidv x = rank A y A rank y x y A rank y rank A
44 43 onintss rank A On y A rank y rank A x On | y A rank y x rank A
45 1 41 44 mpsyl A R1 On x On | y A rank y x rank A
46 39 45 eqssd A R1 On rank A = x On | y A rank y x