Metamath Proof Explorer


Theorem rankval4

Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. (Contributed by NM, 12-Oct-2003)

Ref Expression
Hypothesis rankr1b.1 A V
Assertion rankval4 rank A = x A suc rank x

Proof

Step Hyp Ref Expression
1 rankr1b.1 A V
2 nfcv _ x A
3 nfcv _ x R1
4 nfiu1 _ x x A suc rank x
5 3 4 nffv _ x R1 x A suc rank x
6 2 5 dfss2f A R1 x A suc rank x x x A x R1 x A suc rank x
7 vex x V
8 7 rankid x R1 suc rank x
9 ssiun2 x A suc rank x x A suc rank x
10 rankon rank x On
11 10 onsuci suc rank x On
12 11 rgenw x A suc rank x On
13 iunon A V x A suc rank x On x A suc rank x On
14 1 12 13 mp2an x A suc rank x On
15 r1ord3 suc rank x On x A suc rank x On suc rank x x A suc rank x R1 suc rank x R1 x A suc rank x
16 11 14 15 mp2an suc rank x x A suc rank x R1 suc rank x R1 x A suc rank x
17 9 16 syl x A R1 suc rank x R1 x A suc rank x
18 17 sseld x A x R1 suc rank x x R1 x A suc rank x
19 8 18 mpi x A x R1 x A suc rank x
20 6 19 mpgbir A R1 x A suc rank x
21 fvex R1 x A suc rank x V
22 21 rankss A R1 x A suc rank x rank A rank R1 x A suc rank x
23 20 22 ax-mp rank A rank R1 x A suc rank x
24 r1ord3 x A suc rank x On y On x A suc rank x y R1 x A suc rank x R1 y
25 14 24 mpan y On x A suc rank x y R1 x A suc rank x R1 y
26 25 ss2rabi y On | x A suc rank x y y On | R1 x A suc rank x R1 y
27 intss y On | x A suc rank x y y On | R1 x A suc rank x R1 y y On | R1 x A suc rank x R1 y y On | x A suc rank x y
28 26 27 ax-mp y On | R1 x A suc rank x R1 y y On | x A suc rank x y
29 rankval2 R1 x A suc rank x V rank R1 x A suc rank x = y On | R1 x A suc rank x R1 y
30 21 29 ax-mp rank R1 x A suc rank x = y On | R1 x A suc rank x R1 y
31 intmin x A suc rank x On y On | x A suc rank x y = x A suc rank x
32 14 31 ax-mp y On | x A suc rank x y = x A suc rank x
33 32 eqcomi x A suc rank x = y On | x A suc rank x y
34 28 30 33 3sstr4i rank R1 x A suc rank x x A suc rank x
35 23 34 sstri rank A x A suc rank x
36 iunss x A suc rank x rank A x A suc rank x rank A
37 1 rankel x A rank x rank A
38 rankon rank A On
39 10 38 onsucssi rank x rank A suc rank x rank A
40 37 39 sylib x A suc rank x rank A
41 36 40 mprgbir x A suc rank x rank A
42 35 41 eqssi rank A = x A suc rank x