Metamath Proof Explorer


Theorem rankvalg

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003)

Ref Expression
Assertion rankvalg A V rank A = x On | A R1 suc x

Proof

Step Hyp Ref Expression
1 fveq2 y = A rank y = rank A
2 eleq1 y = A y R1 suc x A R1 suc x
3 2 rabbidv y = A x On | y R1 suc x = x On | A R1 suc x
4 3 inteqd y = A x On | y R1 suc x = x On | A R1 suc x
5 1 4 eqeq12d y = A rank y = x On | y R1 suc x rank A = x On | A R1 suc x
6 vex y V
7 6 rankval rank y = x On | y R1 suc x
8 5 7 vtoclg A V rank A = x On | A R1 suc x