Metamath Proof Explorer


Theorem rankxpl

Description: A lower bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypotheses rankxpl.1 A V
rankxpl.2 B V
Assertion rankxpl A × B rank A B rank A × B

Proof

Step Hyp Ref Expression
1 rankxpl.1 A V
2 rankxpl.2 B V
3 unixp A × B A × B = A B
4 3 fveq2d A × B rank A × B = rank A B
5 1 2 xpex A × B V
6 5 uniex A × B V
7 6 rankuniss rank A × B rank A × B
8 5 rankuniss rank A × B rank A × B
9 7 8 sstri rank A × B rank A × B
10 4 9 eqsstrrdi A × B rank A B rank A × B