Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankxpl
Next ⟩
rankxpu
Metamath Proof Explorer
Ascii
Unicode
Theorem
rankxpl
Description:
A lower bound on the rank of a Cartesian product.
(Contributed by
NM
, 18-Sep-2006)
Ref
Expression
Hypotheses
rankxpl.1
⊢
A
∈
V
rankxpl.2
⊢
B
∈
V
Assertion
rankxpl
⊢
A
×
B
≠
∅
→
rank
⁡
A
∪
B
⊆
rank
⁡
A
×
B
Proof
Step
Hyp
Ref
Expression
1
rankxpl.1
⊢
A
∈
V
2
rankxpl.2
⊢
B
∈
V
3
unixp
⊢
A
×
B
≠
∅
→
⋃
⋃
A
×
B
=
A
∪
B
4
3
fveq2d
⊢
A
×
B
≠
∅
→
rank
⁡
⋃
⋃
A
×
B
=
rank
⁡
A
∪
B
5
1
2
xpex
⊢
A
×
B
∈
V
6
5
uniex
⊢
⋃
A
×
B
∈
V
7
6
rankuniss
⊢
rank
⁡
⋃
⋃
A
×
B
⊆
rank
⁡
⋃
A
×
B
8
5
rankuniss
⊢
rank
⁡
⋃
A
×
B
⊆
rank
⁡
A
×
B
9
7
8
sstri
⊢
rank
⁡
⋃
⋃
A
×
B
⊆
rank
⁡
A
×
B
10
4
9
eqsstrrdi
⊢
A
×
B
≠
∅
→
rank
⁡
A
∪
B
⊆
rank
⁡
A
×
B