Metamath Proof Explorer


Theorem rankxplim

Description: The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of Kunen p. 107. See rankxpsuc for the successor case. (Contributed by NM, 19-Sep-2006)

Ref Expression
Hypotheses rankxplim.1 A V
rankxplim.2 B V
Assertion rankxplim Lim rank A B A × B rank A × B = rank A B

Proof

Step Hyp Ref Expression
1 rankxplim.1 A V
2 rankxplim.2 B V
3 pwuni x y 𝒫 x y
4 vex x V
5 vex y V
6 4 5 uniop x y = x y
7 6 pweqi 𝒫 x y = 𝒫 x y
8 3 7 sseqtri x y 𝒫 x y
9 pwuni x y 𝒫 x y
10 4 5 unipr x y = x y
11 10 pweqi 𝒫 x y = 𝒫 x y
12 9 11 sseqtri x y 𝒫 x y
13 12 sspwi 𝒫 x y 𝒫 𝒫 x y
14 8 13 sstri x y 𝒫 𝒫 x y
15 4 5 unex x y V
16 15 pwex 𝒫 x y V
17 16 pwex 𝒫 𝒫 x y V
18 17 rankss x y 𝒫 𝒫 x y rank x y rank 𝒫 𝒫 x y
19 14 18 ax-mp rank x y rank 𝒫 𝒫 x y
20 1 rankel x A rank x rank A
21 2 rankel y B rank y rank B
22 4 5 1 2 rankelun rank x rank A rank y rank B rank x y rank A B
23 20 21 22 syl2an x A y B rank x y rank A B
24 23 adantl Lim rank A B x A y B rank x y rank A B
25 ranklim Lim rank A B rank x y rank A B rank 𝒫 x y rank A B
26 ranklim Lim rank A B rank 𝒫 x y rank A B rank 𝒫 𝒫 x y rank A B
27 25 26 bitrd Lim rank A B rank x y rank A B rank 𝒫 𝒫 x y rank A B
28 27 adantr Lim rank A B x A y B rank x y rank A B rank 𝒫 𝒫 x y rank A B
29 24 28 mpbid Lim rank A B x A y B rank 𝒫 𝒫 x y rank A B
30 rankon rank x y On
31 rankon rank A B On
32 ontr2 rank x y On rank A B On rank x y rank 𝒫 𝒫 x y rank 𝒫 𝒫 x y rank A B rank x y rank A B
33 30 31 32 mp2an rank x y rank 𝒫 𝒫 x y rank 𝒫 𝒫 x y rank A B rank x y rank A B
34 19 29 33 sylancr Lim rank A B x A y B rank x y rank A B
35 30 31 onsucssi rank x y rank A B suc rank x y rank A B
36 34 35 sylib Lim rank A B x A y B suc rank x y rank A B
37 36 ralrimivva Lim rank A B x A y B suc rank x y rank A B
38 fveq2 z = x y rank z = rank x y
39 suceq rank z = rank x y suc rank z = suc rank x y
40 38 39 syl z = x y suc rank z = suc rank x y
41 40 sseq1d z = x y suc rank z rank A B suc rank x y rank A B
42 41 ralxp z A × B suc rank z rank A B x A y B suc rank x y rank A B
43 1 2 xpex A × B V
44 43 rankbnd z A × B suc rank z rank A B rank A × B rank A B
45 42 44 bitr3i x A y B suc rank x y rank A B rank A × B rank A B
46 37 45 sylib Lim rank A B rank A × B rank A B
47 46 adantr Lim rank A B A × B rank A × B rank A B
48 1 2 rankxpl A × B rank A B rank A × B
49 48 adantl Lim rank A B A × B rank A B rank A × B
50 47 49 eqssd Lim rank A B A × B rank A × B = rank A B