Metamath Proof Explorer


Theorem rankxplim2

Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006)

Ref Expression
Hypotheses rankxplim.1 A V
rankxplim.2 B V
Assertion rankxplim2 Lim rank A × B Lim rank A B

Proof

Step Hyp Ref Expression
1 rankxplim.1 A V
2 rankxplim.2 B V
3 0ellim Lim rank A × B rank A × B
4 n0i rank A × B ¬ rank A × B =
5 3 4 syl Lim rank A × B ¬ rank A × B =
6 df-ne A × B ¬ A × B =
7 1 2 xpex A × B V
8 7 rankeq0 A × B = rank A × B =
9 8 notbii ¬ A × B = ¬ rank A × B =
10 6 9 bitr2i ¬ rank A × B = A × B
11 5 10 sylib Lim rank A × B A × B
12 limuni2 Lim rank A × B Lim rank A × B
13 limuni2 Lim rank A × B Lim rank A × B
14 12 13 syl Lim rank A × B Lim rank A × B
15 rankuni rank A × B = rank A × B
16 rankuni rank A × B = rank A × B
17 16 unieqi rank A × B = rank A × B
18 15 17 eqtr2i rank A × B = rank A × B
19 unixp A × B A × B = A B
20 19 fveq2d A × B rank A × B = rank A B
21 18 20 eqtrid A × B rank A × B = rank A B
22 limeq rank A × B = rank A B Lim rank A × B Lim rank A B
23 21 22 syl A × B Lim rank A × B Lim rank A B
24 14 23 syl5ib A × B Lim rank A × B Lim rank A B
25 11 24 mpcom Lim rank A × B Lim rank A B