Metamath Proof Explorer


Theorem rankxplim3

Description: The rank of a Cartesian product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006)

Ref Expression
Hypotheses rankxplim.1 A V
rankxplim.2 B V
Assertion rankxplim3 Lim rank A × B Lim rank A × B

Proof

Step Hyp Ref Expression
1 rankxplim.1 A V
2 rankxplim.2 B V
3 limuni2 Lim rank A × B Lim rank A × B
4 0ellim Lim rank A × B rank A × B
5 n0i rank A × B ¬ rank A × B =
6 unieq rank A × B = rank A × B =
7 uni0 =
8 6 7 eqtrdi rank A × B = rank A × B =
9 8 con3i ¬ rank A × B = ¬ rank A × B =
10 4 5 9 3syl Lim rank A × B ¬ rank A × B =
11 rankon rank A B On
12 11 onsuci suc rank A B On
13 12 onsuci suc suc rank A B On
14 13 elexi suc suc rank A B V
15 14 sucid suc suc rank A B suc suc suc rank A B
16 13 onsuci suc suc suc rank A B On
17 ontri1 suc suc suc rank A B On suc suc rank A B On suc suc suc rank A B suc suc rank A B ¬ suc suc rank A B suc suc suc rank A B
18 16 13 17 mp2an suc suc suc rank A B suc suc rank A B ¬ suc suc rank A B suc suc suc rank A B
19 18 con2bii suc suc rank A B suc suc suc rank A B ¬ suc suc suc rank A B suc suc rank A B
20 15 19 mpbi ¬ suc suc suc rank A B suc suc rank A B
21 1 2 rankxpu rank A × B suc suc rank A B
22 sstr suc suc suc rank A B rank A × B rank A × B suc suc rank A B suc suc suc rank A B suc suc rank A B
23 21 22 mpan2 suc suc suc rank A B rank A × B suc suc suc rank A B suc suc rank A B
24 20 23 mto ¬ suc suc suc rank A B rank A × B
25 reeanv x On y On rank A B = suc x rank A × B = suc y x On rank A B = suc x y On rank A × B = suc y
26 simprl Lim rank A × B rank A B = suc x rank A × B = suc y rank A B = suc x
27 simpr Lim rank A × B rank A B = suc x rank A B = suc x
28 df-ne A × B ¬ A × B =
29 1 2 xpex A × B V
30 29 rankeq0 A × B = rank A × B =
31 30 notbii ¬ A × B = ¬ rank A × B =
32 28 31 bitr2i ¬ rank A × B = A × B
33 10 32 sylib Lim rank A × B A × B
34 unixp A × B A × B = A B
35 33 34 syl Lim rank A × B A × B = A B
36 35 fveq2d Lim rank A × B rank A × B = rank A B
37 rankuni rank A × B = rank A × B
38 rankuni rank A × B = rank A × B
39 38 unieqi rank A × B = rank A × B
40 37 39 eqtri rank A × B = rank A × B
41 36 40 eqtr3di Lim rank A × B rank A B = rank A × B
42 eqimss rank A B = rank A × B rank A B rank A × B
43 41 42 syl Lim rank A × B rank A B rank A × B
44 43 adantr Lim rank A × B rank A B = suc x rank A B rank A × B
45 27 44 eqsstrrd Lim rank A × B rank A B = suc x suc x rank A × B
46 45 adantrr Lim rank A × B rank A B = suc x rank A × B = suc y suc x rank A × B
47 limuni Lim rank A × B rank A × B = rank A × B
48 47 adantr Lim rank A × B rank A B = suc x rank A × B = suc y rank A × B = rank A × B
49 46 48 sseqtrrd Lim rank A × B rank A B = suc x rank A × B = suc y suc x rank A × B
50 vex x V
51 rankon rank A × B On
52 51 onordi Ord rank A × B
53 orduni Ord rank A × B Ord rank A × B
54 52 53 ax-mp Ord rank A × B
55 ordelsuc x V Ord rank A × B x rank A × B suc x rank A × B
56 50 54 55 mp2an x rank A × B suc x rank A × B
57 49 56 sylibr Lim rank A × B rank A B = suc x rank A × B = suc y x rank A × B
58 limsuc Lim rank A × B x rank A × B suc x rank A × B
59 58 adantr Lim rank A × B rank A B = suc x rank A × B = suc y x rank A × B suc x rank A × B
60 57 59 mpbid Lim rank A × B rank A B = suc x rank A × B = suc y suc x rank A × B
61 26 60 eqeltrd Lim rank A × B rank A B = suc x rank A × B = suc y rank A B rank A × B
62 limsuc Lim rank A × B rank A B rank A × B suc rank A B rank A × B
63 62 adantr Lim rank A × B rank A B = suc x rank A × B = suc y rank A B rank A × B suc rank A B rank A × B
64 61 63 mpbid Lim rank A × B rank A B = suc x rank A × B = suc y suc rank A B rank A × B
65 ordsucelsuc Ord rank A × B suc rank A B rank A × B suc suc rank A B suc rank A × B
66 54 65 ax-mp suc rank A B rank A × B suc suc rank A B suc rank A × B
67 64 66 sylib Lim rank A × B rank A B = suc x rank A × B = suc y suc suc rank A B suc rank A × B
68 onsucuni2 rank A × B On rank A × B = suc y suc rank A × B = rank A × B
69 51 68 mpan rank A × B = suc y suc rank A × B = rank A × B
70 69 ad2antll Lim rank A × B rank A B = suc x rank A × B = suc y suc rank A × B = rank A × B
71 67 70 eleqtrd Lim rank A × B rank A B = suc x rank A × B = suc y suc suc rank A B rank A × B
72 13 51 onsucssi suc suc rank A B rank A × B suc suc suc rank A B rank A × B
73 71 72 sylib Lim rank A × B rank A B = suc x rank A × B = suc y suc suc suc rank A B rank A × B
74 73 ex Lim rank A × B rank A B = suc x rank A × B = suc y suc suc suc rank A B rank A × B
75 74 a1d Lim rank A × B x On y On rank A B = suc x rank A × B = suc y suc suc suc rank A B rank A × B
76 75 rexlimdvv Lim rank A × B x On y On rank A B = suc x rank A × B = suc y suc suc suc rank A B rank A × B
77 25 76 syl5bir Lim rank A × B x On rank A B = suc x y On rank A × B = suc y suc suc suc rank A B rank A × B
78 24 77 mtoi Lim rank A × B ¬ x On rank A B = suc x y On rank A × B = suc y
79 ianor ¬ x On rank A B = suc x y On rank A × B = suc y ¬ x On rank A B = suc x ¬ y On rank A × B = suc y
80 un00 A = B = A B =
81 animorl A = B = A = B =
82 80 81 sylbir A B = A = B =
83 xpeq0 A × B = A = B =
84 82 83 sylibr A B = A × B =
85 84 con3i ¬ A × B = ¬ A B =
86 31 85 sylbir ¬ rank A × B = ¬ A B =
87 1 2 unex A B V
88 87 rankeq0 A B = rank A B =
89 88 notbii ¬ A B = ¬ rank A B =
90 86 89 sylib ¬ rank A × B = ¬ rank A B =
91 11 onordi Ord rank A B
92 ordzsl Ord rank A B rank A B = x On rank A B = suc x Lim rank A B
93 91 92 mpbi rank A B = x On rank A B = suc x Lim rank A B
94 93 3ori ¬ rank A B = ¬ x On rank A B = suc x Lim rank A B
95 90 94 sylan ¬ rank A × B = ¬ x On rank A B = suc x Lim rank A B
96 95 ex ¬ rank A × B = ¬ x On rank A B = suc x Lim rank A B
97 ordzsl Ord rank A × B rank A × B = y On rank A × B = suc y Lim rank A × B
98 52 97 mpbi rank A × B = y On rank A × B = suc y Lim rank A × B
99 98 3ori ¬ rank A × B = ¬ y On rank A × B = suc y Lim rank A × B
100 99 ex ¬ rank A × B = ¬ y On rank A × B = suc y Lim rank A × B
101 96 100 orim12d ¬ rank A × B = ¬ x On rank A B = suc x ¬ y On rank A × B = suc y Lim rank A B Lim rank A × B
102 79 101 syl5bi ¬ rank A × B = ¬ x On rank A B = suc x y On rank A × B = suc y Lim rank A B Lim rank A × B
103 102 imp ¬ rank A × B = ¬ x On rank A B = suc x y On rank A × B = suc y Lim rank A B Lim rank A × B
104 simpl Lim rank A B ¬ rank A × B = Lim rank A B
105 30 necon3abii A × B ¬ rank A × B =
106 1 2 rankxplim Lim rank A B A × B rank A × B = rank A B
107 105 106 sylan2br Lim rank A B ¬ rank A × B = rank A × B = rank A B
108 limeq rank A × B = rank A B Lim rank A × B Lim rank A B
109 107 108 syl Lim rank A B ¬ rank A × B = Lim rank A × B Lim rank A B
110 104 109 mpbird Lim rank A B ¬ rank A × B = Lim rank A × B
111 110 expcom ¬ rank A × B = Lim rank A B Lim rank A × B
112 idd ¬ rank A × B = Lim rank A × B Lim rank A × B
113 111 112 jaod ¬ rank A × B = Lim rank A B Lim rank A × B Lim rank A × B
114 113 adantr ¬ rank A × B = ¬ x On rank A B = suc x y On rank A × B = suc y Lim rank A B Lim rank A × B Lim rank A × B
115 103 114 mpd ¬ rank A × B = ¬ x On rank A B = suc x y On rank A × B = suc y Lim rank A × B
116 10 78 115 syl2anc Lim rank A × B Lim rank A × B
117 3 116 impbii Lim rank A × B Lim rank A × B