Metamath Proof Explorer


Theorem rankxpu

Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypotheses rankxpl.1 A V
rankxpl.2 B V
Assertion rankxpu rank A × B suc suc rank A B

Proof

Step Hyp Ref Expression
1 rankxpl.1 A V
2 rankxpl.2 B V
3 xpsspw A × B 𝒫 𝒫 A B
4 1 2 unex A B V
5 4 pwex 𝒫 A B V
6 5 pwex 𝒫 𝒫 A B V
7 6 rankss A × B 𝒫 𝒫 A B rank A × B rank 𝒫 𝒫 A B
8 3 7 ax-mp rank A × B rank 𝒫 𝒫 A B
9 5 rankpw rank 𝒫 𝒫 A B = suc rank 𝒫 A B
10 4 rankpw rank 𝒫 A B = suc rank A B
11 suceq rank 𝒫 A B = suc rank A B suc rank 𝒫 A B = suc suc rank A B
12 10 11 ax-mp suc rank 𝒫 A B = suc suc rank A B
13 9 12 eqtri rank 𝒫 𝒫 A B = suc suc rank A B
14 8 13 sseqtri rank A × B suc suc rank A B