Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankxpu
Next ⟩
rankfu
Metamath Proof Explorer
Ascii
Unicode
Theorem
rankxpu
Description:
An upper bound on the rank of a Cartesian product.
(Contributed by
NM
, 18-Sep-2006)
Ref
Expression
Hypotheses
rankxpl.1
⊢
A
∈
V
rankxpl.2
⊢
B
∈
V
Assertion
rankxpu
⊢
rank
⁡
A
×
B
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
rankxpl.1
⊢
A
∈
V
2
rankxpl.2
⊢
B
∈
V
3
xpsspw
⊢
A
×
B
⊆
𝒫
𝒫
A
∪
B
4
1
2
unex
⊢
A
∪
B
∈
V
5
4
pwex
⊢
𝒫
A
∪
B
∈
V
6
5
pwex
⊢
𝒫
𝒫
A
∪
B
∈
V
7
6
rankss
⊢
A
×
B
⊆
𝒫
𝒫
A
∪
B
→
rank
⁡
A
×
B
⊆
rank
⁡
𝒫
𝒫
A
∪
B
8
3
7
ax-mp
⊢
rank
⁡
A
×
B
⊆
rank
⁡
𝒫
𝒫
A
∪
B
9
5
rankpw
⊢
rank
⁡
𝒫
𝒫
A
∪
B
=
suc
⁡
rank
⁡
𝒫
A
∪
B
10
4
rankpw
⊢
rank
⁡
𝒫
A
∪
B
=
suc
⁡
rank
⁡
A
∪
B
11
suceq
⊢
rank
⁡
𝒫
A
∪
B
=
suc
⁡
rank
⁡
A
∪
B
→
suc
⁡
rank
⁡
𝒫
A
∪
B
=
suc
⁡
suc
⁡
rank
⁡
A
∪
B
12
10
11
ax-mp
⊢
suc
⁡
rank
⁡
𝒫
A
∪
B
=
suc
⁡
suc
⁡
rank
⁡
A
∪
B
13
9
12
eqtri
⊢
rank
⁡
𝒫
𝒫
A
∪
B
=
suc
⁡
suc
⁡
rank
⁡
A
∪
B
14
8
13
sseqtri
⊢
rank
⁡
A
×
B
⊆
suc
⁡
suc
⁡
rank
⁡
A
∪
B