Metamath Proof Explorer


Theorem rbaibr

Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypothesis baib.1 φ ψ χ
Assertion rbaibr χ ψ φ

Proof

Step Hyp Ref Expression
1 baib.1 φ ψ χ
2 1 biancomi φ χ ψ
3 2 baibr χ ψ φ