Metamath Proof Explorer


Theorem rbropap

Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the condition ps . (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypotheses rbropapd.1 φ M = f p | f W p ψ
rbropapd.2 f = F p = P ψ χ
Assertion rbropap φ F X P Y F M P F W P χ

Proof

Step Hyp Ref Expression
1 rbropapd.1 φ M = f p | f W p ψ
2 rbropapd.2 f = F p = P ψ χ
3 1 2 rbropapd φ F X P Y F M P F W P χ
4 3 3impib φ F X P Y F M P F W P χ