Metamath Proof Explorer


Theorem rbropapd

Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017)

Ref Expression
Hypotheses rbropapd.1 φ M = f p | f W p ψ
rbropapd.2 f = F p = P ψ χ
Assertion rbropapd φ F X P Y F M P F W P χ

Proof

Step Hyp Ref Expression
1 rbropapd.1 φ M = f p | f W p ψ
2 rbropapd.2 f = F p = P ψ χ
3 df-br F M P F P M
4 1 eleq2d φ F P M F P f p | f W p ψ
5 3 4 syl5bb φ F M P F P f p | f W p ψ
6 breq12 f = F p = P f W p F W P
7 6 2 anbi12d f = F p = P f W p ψ F W P χ
8 7 opelopabga F X P Y F P f p | f W p ψ F W P χ
9 5 8 sylan9bb φ F X P Y F M P F W P χ
10 9 ex φ F X P Y F M P F W P χ