Metamath Proof Explorer


Theorem rdg0

Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypothesis rdg.1 A V
Assertion rdg0 rec F A = A

Proof

Step Hyp Ref Expression
1 rdg.1 A V
2 rdgdmlim Lim dom rec F A
3 limomss Lim dom rec F A ω dom rec F A
4 2 3 ax-mp ω dom rec F A
5 peano1 ω
6 4 5 sselii dom rec F A
7 eqid x V if x = A if Lim dom x ran x F x dom x = x V if x = A if Lim dom x ran x F x dom x
8 rdgvalg y dom rec F A rec F A y = x V if x = A if Lim dom x ran x F x dom x rec F A y
9 7 8 1 tz7.44-1 dom rec F A rec F A = A
10 6 9 ax-mp rec F A = A