Metamath Proof Explorer


Theorem rdgdmlim

Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014)

Ref Expression
Assertion rdgdmlim Lim dom rec F A

Proof

Step Hyp Ref Expression
1 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
2 1 tfr1a Fun rec F A Lim dom rec F A
3 2 simpri Lim dom rec F A